Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

San-Nu Zhou, ${ }^{\text {a }}$ Li-Xue Zhang, ${ }^{\text {a }}{ }^{*}$ Jian-Yu Jin, ${ }^{\text {b }}$ Mao-lin Hu^{a} and An-Jiang Zhang ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Educational Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
zhanglixuelz@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.136$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Ethoxyphenyl)-6-(4-methoxyphenyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine

The title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, was prepared by the reaction of 4-amino-3-(4-ethoxyphenyl)-5-mercapto-1,2,4triazole and 2-bromo-4'-methoxyacetophenone. The bond lengths and angles show normal values. The triazole ring makes dihedral angles of $5.7(1)$ and $8.6(1)^{\circ}$ with the two benzene rings.

Comment

1,2,4-Triazoles fused with six-membered ring systems are found to have diverse applications in the fields of medicine, agriculture and industry. The commonly known systems are triazoles fused with pyridine, pyridazine, pyrimidine, pyrazines and triazines. A literature survey reveals that there are few examples of triazoles fused with thiadiazines. A large number of triazolothiazines have been shown to exhibit antimicrobial (Feng et al., 1992) and diuretic (Mohan \& Anjaneyulu, 1987) properties, and act as photographic couplers (Holla et al., 2001). We report here the synthesis and crystal structure of the title compound, (I), which contains the diazine ring system with attached 4-ethoxyphenyl and 4-methoxyphenyl groups (Fig. 1).

(I)

In (I), the bond lengths and angles (Table 1) are usual. The triazole and two benzene rings are essentially planar, while the six-membered thiadiazine ring ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{S} 1$) is distorted from planarity and may be regarded as having a screw-boat conformation, with an r.m.s. deviation of $0.251 \AA$. Atoms C9 and S1 deviate from the thiadiazine mean plane by -0.401 (2) and 0.330 (1) \AA, respectively. In the thiadiazine ring, the $\mathrm{S}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths are comparable to those observed in related compounds (Sert et al., 2003; Zou et
al., 2004). The C and N atoms involved in the conjugated form of the triazole ring show normal bond lengths (Allen et al., 1987; Jin et al., 2004; Table 1). The triazole ring makes dihedral angles of 5.7 (1) and $8.6(1)^{\circ}$, respectively, with the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 12-\mathrm{C} 17$ benzene rings.

Experimental

4-Amino-3-(4-ethoxyphenyl)-5-mercapto-1,2,4-triazole was prepared from 4-ethoxybenzoic acid hydrazide, whose starting material was 4ethoxybenzoic acid, following the literature method of Zhang et al. (1990). To a solution of 4-amino-3-(4-ethoxyphenyl)-5-mercapto-1,2,4-Trizole (0.001 mol) in absolute ethanol was added 2-bromo-4methoxyacetophenone (0.001 mol). The mixture was refluxed for 7 h . The solid obtained on cooling was filtered off, washed with cold water, dried and recrystallized from ethanol to give compound (I). The purified product was dissolved in 95% ethanol and kept at room temperature for 5 d and colourless single crystals of (I) were formed (m.p. 474-475 K).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=366.43$
Monoclinic, $P 2_{1} / c$
$a=11.1834$ (8) \AA
$b=13.7038$ (10) \AA
$c=15.8307$ (9) \AA
$\beta=133.270(3)^{\circ}$
$V=1766.5$ (2) \AA^{3}
$Z=4$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.914, T_{\text {max }}=0.935$
9261 measured reflections
$D_{x}=1.378 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3578 reflections
$\theta=2.5-25.0^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.39 \times 0.36 \times 0.28 \mathrm{~mm}$

3175 independent reflections
2829 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-12 \rightarrow 13$
$k=-16 \rightarrow 10$
$l=-17 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.136$
$S=1.12$
3175 reflections
237 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0686 P)^{2}\right. \\
& \quad+0.4697 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$.

S1-C10	$1.734(2)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.383(2)$
S1-C9	$1.807(2)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.301(3)$
N1-C8	$1.289(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.391(3)$
N1-N2	$1.390(2)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.307(3)$
N2-C10	$1.370(3)$		
C10-S1-C9	$95.03(10)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{N} 1$	$128.46(17)$
C8-N1-N2	$116.54(17)$	$\mathrm{C} 10-\mathrm{N} 3-\mathrm{N} 4$	$106.87(18)$
C10-N2-C11	$105.17(17)$	$\mathrm{C} 11-\mathrm{N} 4-\mathrm{N} 3$	$108.63(18)$

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C} s p^{2}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and Csp ${ }^{3}-\mathrm{H}=0.96$ or $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. M203149).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
Feng, X. M., Chen, R. \& Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194.
Holla, B. S., Akberali, P. M. \& Shivananda, M. K. (2001). Il Farmaco, 56, 919927.

Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. \& Shen, L. (2004). Acta Cryst. C60, 0642-0643.
Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Sert, S., Ereag, A., Senturk, O. S., Sterenberg, B. T., Udachin, K. A., Ozdemir, U. \& Sarikahya, F. U. (2003). Polyhedron, 22, 1689-1693.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, L. X., Zhang, Z. Y. \& Zeng, F. L. (1990). Chem. J. Chin. Univ. 11, 148151.

Zou, K.-H., Cai, X.-Q., Chen, L.-X., Zhang, L.-X.., Zhang, A.-J. \& Hu, M.-L. (2004). Acta Cryst. E60, o1736-o1738.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

